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Finite Element Methods for Parabolic Equations 

By Milos Ziamal 

Abstract. The initial-boundary value problem for a linear parabolic equation with the 
Dirichlet boundary condition is solved approximately by applying the finite element discreti- 
zation in the space dimension and three types of finite-difference discretizations in time: 
the backward, the Crank-Nicolson and the Calahan discretization. New error bounds are 
derived. 

1. Introduction. A number of years ago, engineers applied the finite element 
method to the solution of the heat conduction problem. We mention the papers by 
Visser [7] and by Wilson and Nickell [8]. Their idea is that in the space dimension 
a finite element discretization is used whereas in time a finite-difference method is 
applied. Recently, there appeared papers in mathematical journals where these 
methods were analyzed as well as new methods proposed, some of them of higher 
order of accuracy, and where error bounds of a different kind were derived. We 
mention the papers by Douglas and Dupont [3], Hlavacek [5] and Bramble and 
Thomee [1], [2]. 

The problem we are considering is the initial-boundary value problem 

au/at = Lu for (x, t) C Q X (0, T), 

(1.1) u = O onr x(o, T), 

u(x, 0) = g(x) in U. 

Here 
N a9 I 9 

(1.2) Lu= A - (ai,(x) 
- - a(x)u 

and x =_ (xi, * , XN) is a point of a bounded domain Q in Euclidean N-space RN 

with a smooth boundary r. 
At this point, let us introduce some notation. The norm | IlL 2 of the space L2(Q) 

and the scalar product are denoted by I II o and (. , . )o, respectively. Hm = W2'm'(Q)J 
m = 0, 1, , denotes the Sobolev space defined by 

/ 1/2 

||u|H- E ||IDvI I 10l 
I v I1S m 

Instead of II lIH-, we write rI n.I Ho is the closure of 5D(Q), the set of infinitely 
differentiable functions with compact support in Q, in the II I,-norm. 

The finite element discretization is considered in spaces V,' which are finite- 
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dimensional subspaces of H.' and which have the following property: For any 
u C H"'1 C H,,' there exists a function u C Vh' such that 

(1.3) I u - aii? ChP=1' I lII+1, j=0, 1, 

C being a constant independent of the small parameter h and of the function u. 
Such spaces are well known for domains of a special form (see, e.g., the references 
in [9]). They were constructed in [11] (for p odd) and in the Appendix of [12] for 
arbitrary two-dimensional domains. 

To introduce the first two approximations, we set un = u(x, nk), n -0 1, * *, 
n < T/k. Here k > 0 is the time increment. Further, we denote by a(u, v) the energy 
functional of the operator Lu: 

(1.4) a(u, v) = f [ E ai )ax a+ a(x)uvj dx. 

In the case of backward discretization, the approximate values U' of the exact solution 
un are the functions from Vhi, determined, aside from an initial condition, by 

(1.5) - U, so + ka(U , p) = 0 V p E Vi. 

The Crank-Nicolson discretization gives 

(1 .6) ( Un+1 _ Un s + Uka(U +1 + U., s) - 0 v p E Vh. 

Although the reader can find the derivation of the defining equations (1.5) and 
(1.6), e.g. in [3], we briefly describe the method to derive (1.5) and (1.6), respectively. 
The variational formulation of problem (1.1) is to find, for t > 0, the function u E Ho' 
such that, besides the initial condition, it satisfies 

(1.7) (a, p)o+ a(u, p) = V Vs?e Ho. 

We approximate u(x, t) by a function U(x, t) &E Vh: 

(1.8) (U Cp)o + a(U, sp) = 0 v sp E Vha 

If U(x, t) = El-l ao(t)vj(x), where the vi(x) form the basis of VJh, then (1.8) repre- 
sents a linear system of ordinary differential equations for the unknown coefficients 
ai(t). We get (1.5) when we solve this system by the simplest implicit one-step method, 
whereas (1.6) follows by using the trapezoidal method. 

For backward discretization, the estimate of the error will be 

lIHU _ Unll ? CQh? + k), 0 _ n ? T/k. 

For the Crank-Nicolson discretization, we shall prove that 

IlIun - Unlij ? C(hp + k2), 0 < n ? T/k. 

Here C is a constant which does not depend on h, k or n. We want to stress that no 
restriction is imposed on h or k. 

The estimates of Douglas and Dupont [3], which were derived for a nonlinear 
equation, are in a different norm whereas the order, both in h and k, is the same. 
Bramble and Thomee [2] consider Galerkin methods with parameters h and k tied 
together by the relation kh-2 = const. Their Theorem 2, when applied to the Crahik- 
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Nicolson discretization, gives error bounds of the same order in k, again in a different 
norm. 

In the last section, we propose a new procedure which we obtain when we solve 
system (1.8) by the Calahan A-stable third order method (see, e.g., [4]). The defining 
equations for the approximate values U' will be 

(W+' ,p)o + bka( W ,+l, p) = -ka(U', p), y E , 

(1.9) (Z' S)O + bka(Zn+l, s) = -ka(Un, P) + 3ka(WWn+, ), 

Un+1 Un + 4(3 Wv~ + Zn +), 

b= 2 (1?( + 1\/3), 2=23/3. 
We shall be able to prove that 

Htun - UnII ? C(h" + k3), 0 _ n < T/k. 

Here 

(1.10) fIull2 = IjufI2 + kIIuIIj. 

Hence, it also holds 

Htun _ UnIIo ? C(h'p + k3), 0 _ n ? T/k. 

At this time, we have to assume k > ch, c = const > 0. This assumption is no real 
restriction from the computational point of view because our effort must be to choose 
k of the same magnitude as h. We shall also show that the new procedure compares 
favorably with the Crank-Nicolson discretization from the computational point 
of view. 

2. Backward and Crank-Nicolson Discretization. For simplicity, we assume in 
the following that 

(2.1) ai,(x), a(x), g(x) E C (n), r E c . 

Further, we assume that 
N N 

(2.2) aii = aii aE (x)t a > a ji, a = const > 0, a(x) > 0. 
i aj=1 

X~i> a 

We state some facts about the solution u(x, t) of (1.1). It is of the form u(x, t) - 
Ei=je-itgi4i(x) where Xi and 4i(x) are (positive) eigenvalues and (orthonormal) 
eigenfunctions, respectively, of the problem 

(2.3) -L+= pt', i1r = 0 

and gi are the Fourier coefficients of the function g(x). Ladyzenskaja proved (see 
[6, Section 17]) that if g E H'm and 

(2.4) gr = Lglr= =L. [m-1/21 I = O 

then u(x, t) C Htm for t _ 0. Subsequently, we will need estimates for IuI n-`unjj+ 
and I I utn+ ,L+. We obtain them easily by means of two inequalities by Ladyzenskaja 
(see [6, Section 17]). The first one holds for any series E, lgi l6(x): 
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co 2 OD 

(2.5) Z gi 'i(x) _ C> (Xf + t)g.* 

The other one holds for any g C Hm satisfying (2.4): 
coD 

(2.6) E < 
t=1 

(this is a consequence of (17.6) from [6]). 
To find the estimate for the difference co = u da1- u (under assumption (2.4)), 

we calculate the Fourier coefficients ah. They are equal to e- nX (e kx - 1)gi. As 
let- 1_ ? r for r > 0, it follows that I ci _ kXi Igi. By means of (2.5) and (2.6), 
we get 

' lI(rn12 < Ck2>E Xng2 < Ck2j IgI 12 
-25i c 1 

M 

i~=1 

Hence 

(2.7) llu n+ - Unl Im2 < Ckliglim. 

In the same way, we find that 

(2.8) HU |nl ||m < cl |g| m. 

We now introduce two theorems. Only the second one will be proved because 
the proof of the first one is analogous. In both cases the initial approximation is 
chosen as follows: 

(2.9) U0= = W, 

where g(x) C V,' satisfies (1.3), i.e., 

(2.10) jHg - Ri _ Ch< + -'Ilgllv+,, i- 0, 1. 

THEOREM 1. Let g(x) satisfy (2.4) with m = max(p + 3, 4). Then, for the ap- 
proximations U" determined uniquely by (2.9) and (1.5), it follows that 

(2.11) _u" - U'lIH1 _ C(hH + k) 11gIIHH, 0 ? n < T/k. 

THEOREM 2. Let g(x) satisfy (2.4) with m = max(p + 3, 6). Then, for the ap- 
proximations Un determined uniquely by (2.9) and (1.6), it follows that 

(2.12) II"n - U"I1 _ C(h" + k2)1lgljHm, 0 ? n ? T/k. 

Proof of Theorem 2. Let us consider the function a = u"+ - u_ -n _kL(ut+1 + un). 
o- belongs to H"'2. We need to estimate m-2l The Fourier coefficients of o- are 

i =[e-(n+l)ki - e-nk~i + 2k?i(e (nl) + enkX )]gi 

(1 + 'kXi)[ek~i _- 2iji kXi g 

By expanding in the Taylor series, we find that for r sufficiently small 

* In the sequel, C is a generic constant, not necessarily the same in any two places, which does 
not depend on h, k, n and g. 
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(1+ 2 - ) | 

As the left-hand side is bounded by C(1 + 2r) for r > 0, this inequality holds for all 
r _ 0 (with possibly greater constant C). Therefore, I I Ck3 X,'3gi I and II I102 < 

Ck6 Xi X6gi2. By (2.6), it follows that 

(2 .13) 10_1 IJ l -< Ck3 1 gl Im. 
Now, for sp E V,', we have 

(a S')o = (u-+ , _ )o - 1k(L(u8+1 + un) S?)o 

= (u -~l _t, 'n p)o + 'ka(un' + u p). 

Denoting en = un - Un and subtracting (1.6) from the last equation, we get 

(2.14) (e'+1 - e nop)o + Vka(e+l + e, sp) = (, P)o Vo E Vh 

We choose '=en+l - en - V =o -_',& = =u'+ _-u . Certainly, 'p belongs 
to Vh' because it is equal to -(U7+1 - U W) + . From (2.7) and (1.3), it follows that 

(2.15) I|&liI, _ Ch1+ThI| o@ ,WP+1 ? Ckh"+ iiglIm9 = 0, 1. 

Substituting the above value of sp in (2.14), we obtain 

en+1 -e lloI + lka(e` + e , en+1 -e n) 

= (en~' - en, ~')0o + lka(e`~' + e , VI) + (e - en )) ( 0. 

Denoting a(u, u) by Iu12I, apply the inequality Iab I _ ?jea2 + b2/2E (with different 
values of E), the inequality Ia(u, v)l _ IuI1Ivj, and the estimates (2.13), (2.15) re- 
peatedly and obtain the result 

en+1 - en Io + 1k[jle'n+ 1 - _eni2i 

< 'IIIn - e llo + Ck2O2(P+l) IgI12 + 2k2[le+1 12 + Ien12] + Ck2 2ViI 2 

+ 4IIen+1 -e 2llo + Ck6IgII, + Ck6IIgI12 + Ck2h2(p+l) I IgI12 

Hence 

l- eoII + Wk(1 - k) Ien+112 < 'k(1 + k) len/l + Ck2A 

where A (h2p + k4) Igi 12, so that it certainly follows that 

In+l12 < I+ k IeI + CkA le 1l = I k le 1l+ CkA. 

Setting q = (1 + k)/(l - k) and n = 0, 1, * in the last inequality, we find 

(2.16) <e j1 ? qfle |j + Ckl A. I = I q - 1 

As q > 1, it follows that qfl < (1 + k)T-l/(l - k)Tkl for n < T/k. Now (1 + k)Tk-l 

-* eT and (1 - k)Tk 
I 

- e-T for k -> . Therefore qn is bounded for n < T/k: qe _ C. 
Furthermore, we have 0 < l/(q - 1) < 1/2k. From (2.16), it follows that 

le nl ? Cleo 12 + CA 
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and with respect to (2.10) (notice that lel1, = Ig - _1 ? Cljg - 1): 

fenfl ? C(h20 + k4)ffgff2, 0 < n < T/k. 

Taking the square root and realizing that lIvII, < Cjvj1 for v E Hol, we get the final 
estimate (2.12). 

3. The Calahan Discretization. Let us compare, first, the amount of arithmetic 
operations which are necessary to carry out the procedures (1.6) and (1.9). As before, 
vi(x), i = 1, * * , 1, denote the basis functions of the space Vie. Let M be the so-called 
mass matrix, M = {(vi, vj)o}Lj1 and K the stiffness matrix, K = {a(vi, v1)},1I. 
If v = (v1, *.., v,)' (the superscript T denotes transposition) and Un = (a n)TV 

where 't = (<X.1 a1")T, then (1.6) leads to the solution of the system 
(M + UkK)ra"+ = (M - kK)oa'. It can be written in this way: 

(3.1) (M + kK)ef = Man an' = 2n - a 

Hence the main arithmetic operations necessary to carry out the Crank-Nicolson 
discretization consist of two parts: (1) We have to compute the matrices M and K 
and to carry out the forward elimination for the matrix M + UkK. (2) At every time 
step we have to multiply the matrix M by a vector and to carry out the back sub- 
stitution. 

The procedure (1.9) leads to the solution of two systems with the same matrix. 
If we set Wn+ 1 = (on+ l)TV Zn+ Z = (Tn+ 1)TV then these systems are 

(3.2) (M + bkK)gn8+l = -kKe, 
(M + bkK)fyf~ = -kKie + fkKgt+1. 

We see that the first part of the main arithmetic operations necessary to carry out 
the Calahan discretization is the same whereas the second part is only twice as large 
as in the case of the Crank-Nicolson discretization. This is certainly a favorable 
result and, as the use of cubic polynomials (p = 3) in two-dimensional elliptic prob- 
lems gives very good numerical results and has other advantages (see [10]), we can 
expect that the procedure (1.9) will prove itself useful in applications. 

We now formulate and prove 
THEOREM 3. Let g(x) satisfy (2.4) with m = max(p + 1, 8) and let k _ ch, c = 

const > 0. Then, for the approximations Un determined uniquely by (2.9) and (1.9), 

(3.3) iUon - Unjj < C(h0 + k3)1IgIjm, 0 < n ? T/k. 

(The norm I1I1is defined by (1.10).) Hence 

(3.4) HUin- UnIIL ? C(h2 + k3)1IgIjm, 0 < n < T/k. 

Proof. Multiplying the first and the second equation in (1.9) by 3 and 1, re- 
spectively, adding and putting U"' - Un for '(3 Wn+1 + Z n+1), we get 

(U"1, ,p)o + bka(Un', (p) 

(U. s,)0 - (1 - b)ka(Un, 'p) + 'ftka( W p) V' E VI, 
Let wnl EE H0' be the solution of 
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(3.6) (wn+1 )o + bka(w'+1 , = -ka(u, 
(p) V(p (E Ho 

Consider the function 

=u+1 - bkLuC - 1 - - b)kLun + -b [wn+l - kLun]. 
4b 

As before, we must estimate I loI10. To this end, we compute the Fourier coefficients 

oi of o. After elementary computations, we get 

aj = e >(I + bkXi){e - [1 1 +Axikx, 4 (I bk-)]} 

By expanding in the Taylor series, we find that, for r sufficiently small, 

|(1 + br){eT [l ' - I( + br 4 4 + brl <C 

By the same argument which we used in the proof of Theorem 2, this inequality is 

true for all r > 0. Therefore I<iI < Ck4Xi4 and 

(3.7) 110110 < Ck4 1IIglIm 
With respect to (3.6), we have that, for sp VC 

(o~po ) (Un+l ,p>)o+ bka(un+l, p) - (u, p)o + (1 - b)ka(u, s) 

+ 
0 

[(Wn+l, Sc>)O+ k(u, p 

(3.8) = (u s1, Sc')o + bka(u1 +, )- (us, Sc')o + (1 - b)ka(un, (p) 

- ka(w , p). 

We denote 71 W = w 1 - W'~, subtract (3.5) from (3.8) and the first equation 

(1.9) from (3.6). We get 

(3.9) (e +1, p)o + bka(en+1, ,) 

= (e, p) - (1 - b)ka(en, Sp) + 'Oka( PC1, ) + (o, )o V Vh? 

(3.10) ( n+l S) + bka(r1, p) = -ka(e, sp) V p ? Vh. 

First we choose sp = e _ , + = - _, w = un+ . From (2.8) and (1.3), it follows 

that 

(3.11) I~ lllli < Ch"+'VJg|J j = 0, 1. 

Substituting the above value of sp in (3.9), we obtain 

le 1Io + bk1e2 11 - (enen+1)o -(1 -b)ka(en en+1) + j13ka(nn+l n+1) 

+ (o, en )o + (enl, Vt/)0 + bka(en 1, Vt) - (en, it)o 

M (I -ab)ka(en, + - wtka(8 0 vro _ (vle 00of 

Making use of the inequality jabl < 1 6a 2+ b 2/2 a with various values of 6, the 
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inequality la(u, v)l < lul, I vi and the estimates (3.7) and (3.11), we get 

Jle 0ll + bke 1j ? el + 2llell0 + 2 - 2klel2 + - 2 k l 2 

+ 4,Bk[2bl1n+l i2 + 1len+ 12j 

+ lkllen+ll1 + Ck7llglIg,1 

+ -1cht|e 1l l + Ch2v+lll~,, + 1 k2 e ~ 1 ii + 2 
CkI2 IgI j 2 

+ 4chIle llo + Ch + Eklel + Ckh 

+ ektl 112 + e- Ckh2ptlgljl2 + Ck8l jgj 12 + Ch2(p+l) I jgj 12 

where the positive number E will be chosen later. The preceding inequality can be 
simplified (by using the assumption k ? ch) in the following way: 

2(I - k) Ile n+I 
1 1 + k(-2 - I- 8b - e le n+ 

12 

(3.12) < '(I + k)l(enjjO + ( 2 + e)kle 1 + k + E)| in+1 

+ (1 + e- )Ck[Ihv + k6lilgiin. 

To derive the final inequality, we must estimate the term 1,n+ 112. At this time, 
we choose so = n+ - _ i/i = -c, @ = wn+ ' The Fourier coefficients wi of the 
function w are cei = -kXi/(I + bkXi)e-nkXigi. Hence 1wil < Igil/b and, by (2.5) 
and (2.6), 1 1 I+I ? Cl gl I 1m; therefore 

lllli - Chp++ljIlgljlm j = 0, 1. 

Setting p = 1n+i in (3.10), we have 

jjnf+ljj2 + bkljn+112 = -ka(en, ,n+1) + (,In+l, ')o + bka(nnf+, #) + ka(e, s1) 

< 'bklnn~l~ j + Iklenl22 + 2l ,n+ 11l1 + Ch2(p+l) I Igl 12 
bb 

+ b k1[7nn+ 1 12 +-lk2P [ g Im2 + 2bken 112 '2 ki2t+b+kei 

+ E lCkh2V IgIm; 

hence 

2b(1 - E)kiti i< ? Wk(l + ) lei + (1 + -)Ckh ; 

and finally 

(3.13) l |1 '< b2 1 + E Ienil + (1 + E-')Ch M.gii. 

From (3.12) and (3.13), it follows that 

(3 .14) 2(1 - k)i le n+1ilo + Cl(e)klen+1 12 

< 1(1 + k)iie0ii2 + C2(E)kieni2 + (1 + C-')Ck(h2P + k6)ligii 
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where 

Cl(f) = 3b - 
C2() 

- 
b + E + 

Ob 
+ .-b 2 + d 

2 8b 2 2 
Since 

Cl(0) =3 
- I 

> 0.43 C2(0) = 1 + 0- < 0.29, 2 8b2 8b 

we can choose e = e0 > 0 such that C1(,e) _ C2(,E). We set Cj(e0) = 2y and obtain, 
from (3.14), 

(1 - k) I le1 + yk (1 + k)lIe I1o + ykle 1j + Ck(h + k6)jlgllJ 

and further 

(I - k)[IlIle' + kle 1 < (1 + k)[le IIo + Zykle 1 + Ck((h + k )jjgiM. 

For the moment, let 1 | 112 be defined not by (1. 10) but by 11. [ 1 2 = l[ [ lo + ykl 12. 
Then the last inequality can be written in the following way: 

|en+1 112 < qlIen112 + Ck(h2V + k6)l lg12, 

where again q = (1 + k)/(1 -k). Repeating the argument used at the end of the 
proof of Theorem 2, we get 

IlenI12 < C(h2p + k6)IlgIl12 0 < n < T/k. 

Therefore 

e < C(=2Q + k6)lIgIlj, M en2 ? C(1=2Q + k")Ilgl M 

and (3.3) follows immediately. 
Concluding Remark. The discretizations in time introduced here are derived 

from A-stable methods for solving ordinary differential equations. The approximation 
of the function e-t used in the first two procedures is that of Pad6 approximation. 
This is not the case in the third procedure. 

We know that the q-stage implicit Runge-Kutta method of order 2q is A-stable 
(see, e.g., [4]). The approximation of the function e-t used in this method is Pad6 
diagonal approximation. One can apply this class of methods to solving Eq. (1.8). 
For q = 2 (see [4, p. 39]), one gets the following scheme: 

(W ~ , (p)o + f31ka(W"+l, p) + f312ka(Zn+', p) = -ka(U, so), h 
B21ka(Wn+l', s) + (Zn++ p)0 + 022ka(Z", p) = -ka(Un, s), 

un+1 =u (rl+z+ U = - +Z ) 

all = f22 = 3 012 = - V3 121 = ! + 
\ 

v 4' 4 6' 4 6 

It is questionable whether this procedure, even with its fourth order accuracy, will 
prove to be useful in applications because of the much greater number of arithmetic 
operations necessary for carrying it out. 
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4. Appendix. 1. Elsewhere, we shall derive error bounds for the procedures 
introduced here which are uniform for 0 < n < c. E.g., for the Crank-Nicolson 
discretization, it holds without any restriction on the increments k and h that 

(4.1) max I un - UnljJ < C[h"+' + k21 lgj gJI , ,g 
Ogn<aZ k 

if g satisfies (2.4) with m = max(p + 1, 4). Such estimates indicate that good results 
in long time calculations can be expected. Nevertheless, there is one difference between 
the Calahan** and backward discretization on the one hand and the Crank-Nicolson 
discretization on the other hand which speaks for preferring the former methods. 
The exact solution of problem (1.1) has the property that 

(4.2) 1 Ju(x, t)I lo < e-"' I g lo0, t > 0, 

for any g E L2(9). Here, X1 is the smallest (positive) eigenvalue of the operator 
-Lu. We want to point out that the Calahan and backward schemes preserve this 
asymptotic behavior characteristic of (1.1), i.e., for any U0 E L,(Q) and for any k 
not too large, say k < 1, it holds that 

(4.3) | | Un| l0 < e aonkI I U |o , n = 1, 2, * * * , =, = const > 0. 

The Crank-Nicolson scheme has the same property if k tends to zero fast enough 
with respect to h, namely, if k = ha with a ? 1. On the other hand, if k = ha, a < 1, 
then (4.3) is not true. More exactly, for any sufficiently small positive k, there exists 
an U' such that, for n = 1, 2, * , it holds that 

(4.4) 1 
1 U" nIo 

> e-(k)nk II U01, 0 < E((k) < Ck2(l/a1) -O o. 

2. We assume the following additional properties of the basis {I V, v2, VI., Vl 
of the space V10: 

(a) II(PII' < Ch-'Io Vp C VP, 

(b) IIviI11/1IviI12 > coh 2, co = const > 0. 

The finite element subspaces used in applications possess these properties. 
Let us consider the Calahan discretization and let Un = (an)Tv as before. 

To get an',1 we have to compute gn+1 and 'nr1 from (3.2); then Un+1 = n + 
4(3 fn+ I + tn+ 1). There is a recurrence relation between a` 1 and an . However, in this 
relation, the matrix A = M- 1K appears which is not symmetric. Therefore, we set 

an _ M1/2an 

By elementary, though not short computations, we get a"+ 1 = R(kS)an and 

(4.5) an = [R(kS)]na0 

where 

(4.6) R(r) = 1 - I + br 4 X1 + bri s = 

* * In the linear homogeneous case, the Calahan discretization is identical with the Makinson 
scheme of the third order of accuracy (see J. G. Makinson, "Stable high order implicit methods 
for the numerical solution of systems of differential equations," Comput. J., v. 11, 1968, pp. 305-310). 
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(b and d are defined in (1.9)). With respect to the meaning of the matrix M, we easily 
see that 

(4.7) II U'llo = Ilanll. 

From (4.5), we have 

(4.8) It U1 0 < llR(kS)lIn I U0/o0, n = 1, 2, 

Now, S is a symmetric positive definite matrix (M and K are positive definite matrices); 
hence 

(4.9) IIR(kS)Il = max IR(kA)l 
A 

where the maximum is taken over all eigenvalues A of the matrix S. Let us find bounds 
for A. 

If Sa = Aa and p = (M- 12a)Tv, then A = a(sp, o)/ll Io f1'. As a(fp, qp) > X1i I If l I' 
V sp & Ho', it certainly holds that A1 < A. On the other hand, from property (a), 
it follows that A < Ch-2. Therefore, 

(4.10) Xik ? kA < CkhI2. 

The function R(r) is decreasing in the interval (0, C)), R(l) = 1 and R(o) = 

-[A\/3- 1] > -1. With respect to (4.10), we have 

max IR(kA)l ? max IR(r)l < max[IR(kX1)l, V/3- 1]. 
A kX t< co 

First, let Xi < 1. Then kXi < 1. As R(r) is decreasing and R'(0) = -1, there exists 
al0 > 0suchthatlR(r)j < e- ' for0 < ? < 1.Furthermore,A/3 -1 = e0 < e-$1 k 

for k < 1, fl = -lg[-V3 - 1]. If we set f2 = max(Xl0o, 01) > 0, we have 
maxAlR(kA)l ? e- . kand, from (4.8) and (4.9), (4.3) follows with ao = 12. If XI > 1, 
we have maxAlR(kA)l < maxk,,<c-R(r)j and we get (4.3) with ao = max(00, 131). 

The backward scheme leads to (4.5) where R(r) = 17/( + r). The same arguments 
apply as before. 

3. The Crank-Nicolson scheme can also be expressed in the form (4.5) where 
R(r) = (1 - 4r)/(l + 14r). This function is also a Pade rational approximation of 
the function e- and, again, R(r) decreases in (0, o) and lR(r)j < 1 for -r > 0. If 
k = ha, a > 1, then kh-2 does not increase too fast, kh-2 < k' . Now, 

IIR(kS)ll = max IR(kA)l < max IR(r)l < max IR(r)l. 
A kX - r 5Ckh-2 kX rjk1 

Because, near r = ao, R(r) behaves in a similar way as near r = 0, it is easy to prove 
(4.3) again. 

The situation is different if k = ha, a < 1. The reason is that the approximation 
R(r) = (1 - r)/(1l + 1r) does not possess the property 

(4.11) IR(oo)l < 1. 

Let us examine this case. The maximum eigenvalue Amax is bounded from below by 
coh-2 which follows from assumption (b) and the fact that 

aTSa a TKa a(p,p) 
Amax = max, = max -= max -2I fla~~l aMa (P llzll0 
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Therefore, 

kAmax _ cokh 2 = cok-- , = 2(1/a - 1), co = const > 0. 

As R(r) is decreasing in (0, oa), we have IIR(kS)II = max{ jR(kAmijn)l, R(kAmax)I } 

Further, for r small, it holds that 

0 < R(r) < 1 - (I, R(l/r)I >- 1 - 4/r. 

Hence, for k small, we get 

0 < IR(kAmin)| < R(kX,) < IR(cok15 )I < JR(kAmax) I 

and 

(4.12) IIR(kS)II = IR(kAma.)l _ IR(cok 85)I _ 1 - 4cok1 =e(k)k 

where 

E) (k)= --Ig(l -4cok' +) = 4cok' + O(k' +)2. 
k 

Let a? be an eigenvector of the matrix R(kS) belonging to the eigenvalue R(kAma.) 

and U? = (M-12a0)Tv. Then, by (4.5), 

an = [R(kS)]-a0 = [R (kAma. )]ra0 

and, by (4.7), (4.12), 

| | Un I| l= IR(kAmax)In 11 U0j1o > e-e(k)nk | U011| 
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